3.348 \(\int \frac{1}{x (a+b x)^{3/2}} \, dx\)

Optimal. Leaf size=38 \[ \frac{2}{a \sqrt{a+b x}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right )}{a^{3/2}} \]

[Out]

2/(a*Sqrt[a + b*x]) - (2*ArcTanh[Sqrt[a + b*x]/Sqrt[a]])/a^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0110024, antiderivative size = 38, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {51, 63, 208} \[ \frac{2}{a \sqrt{a+b x}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right )}{a^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x)^(3/2)),x]

[Out]

2/(a*Sqrt[a + b*x]) - (2*ArcTanh[Sqrt[a + b*x]/Sqrt[a]])/a^(3/2)

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x (a+b x)^{3/2}} \, dx &=\frac{2}{a \sqrt{a+b x}}+\frac{\int \frac{1}{x \sqrt{a+b x}} \, dx}{a}\\ &=\frac{2}{a \sqrt{a+b x}}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x}\right )}{a b}\\ &=\frac{2}{a \sqrt{a+b x}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right )}{a^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.0127394, size = 30, normalized size = 0.79 \[ \frac{2 \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{b x}{a}+1\right )}{a \sqrt{a+b x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x)^(3/2)),x]

[Out]

(2*Hypergeometric2F1[-1/2, 1, 1/2, 1 + (b*x)/a])/(a*Sqrt[a + b*x])

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 31, normalized size = 0.8 \begin{align*} -2\,{\frac{1}{{a}^{3/2}}{\it Artanh} \left ({\frac{\sqrt{bx+a}}{\sqrt{a}}} \right ) }+2\,{\frac{1}{a\sqrt{bx+a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x+a)^(3/2),x)

[Out]

-2*arctanh((b*x+a)^(1/2)/a^(1/2))/a^(3/2)+2/a/(b*x+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.59034, size = 266, normalized size = 7. \begin{align*} \left [\frac{{\left (b x + a\right )} \sqrt{a} \log \left (\frac{b x - 2 \, \sqrt{b x + a} \sqrt{a} + 2 \, a}{x}\right ) + 2 \, \sqrt{b x + a} a}{a^{2} b x + a^{3}}, \frac{2 \,{\left ({\left (b x + a\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{b x + a} \sqrt{-a}}{a}\right ) + \sqrt{b x + a} a\right )}}{a^{2} b x + a^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[((b*x + a)*sqrt(a)*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2*sqrt(b*x + a)*a)/(a^2*b*x + a^3), 2*((b*x
 + a)*sqrt(-a)*arctan(sqrt(b*x + a)*sqrt(-a)/a) + sqrt(b*x + a)*a)/(a^2*b*x + a^3)]

________________________________________________________________________________________

Sympy [B]  time = 2.14611, size = 146, normalized size = 3.84 \begin{align*} \frac{2 a^{3} \sqrt{1 + \frac{b x}{a}}}{a^{\frac{9}{2}} + a^{\frac{7}{2}} b x} + \frac{a^{3} \log{\left (\frac{b x}{a} \right )}}{a^{\frac{9}{2}} + a^{\frac{7}{2}} b x} - \frac{2 a^{3} \log{\left (\sqrt{1 + \frac{b x}{a}} + 1 \right )}}{a^{\frac{9}{2}} + a^{\frac{7}{2}} b x} + \frac{a^{2} b x \log{\left (\frac{b x}{a} \right )}}{a^{\frac{9}{2}} + a^{\frac{7}{2}} b x} - \frac{2 a^{2} b x \log{\left (\sqrt{1 + \frac{b x}{a}} + 1 \right )}}{a^{\frac{9}{2}} + a^{\frac{7}{2}} b x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)**(3/2),x)

[Out]

2*a**3*sqrt(1 + b*x/a)/(a**(9/2) + a**(7/2)*b*x) + a**3*log(b*x/a)/(a**(9/2) + a**(7/2)*b*x) - 2*a**3*log(sqrt
(1 + b*x/a) + 1)/(a**(9/2) + a**(7/2)*b*x) + a**2*b*x*log(b*x/a)/(a**(9/2) + a**(7/2)*b*x) - 2*a**2*b*x*log(sq
rt(1 + b*x/a) + 1)/(a**(9/2) + a**(7/2)*b*x)

________________________________________________________________________________________

Giac [A]  time = 1.23816, size = 50, normalized size = 1.32 \begin{align*} \frac{2 \, \arctan \left (\frac{\sqrt{b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a} a} + \frac{2}{\sqrt{b x + a} a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)^(3/2),x, algorithm="giac")

[Out]

2*arctan(sqrt(b*x + a)/sqrt(-a))/(sqrt(-a)*a) + 2/(sqrt(b*x + a)*a)